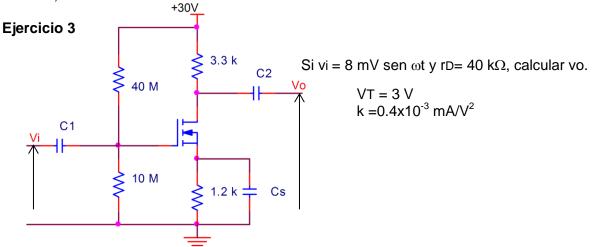
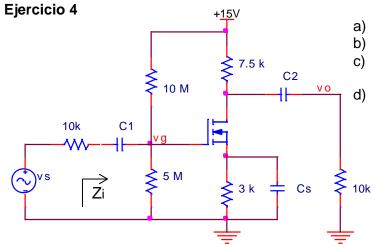

ELECTRÓNICA ANALÓGICA I

Trabajo Práctico 6: Transistor MOSFET

Ejercicio 1



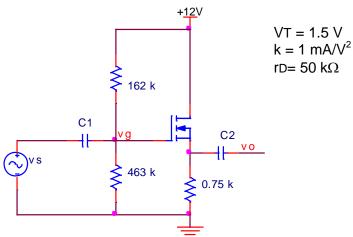

Se tiene como datos: VG = 3.6 V, Rs = 2 k Ω , RD = 4 k Ω . Calcular el punto de polarización Q. Verificar región de funcionamiento

$$VT = 0.8 V$$

k = 0.5 mA/V²

Ejercicio 2

Considerando el circuito del Ejercicio 1 calcular VT del dispositivo tal que: VG= 5 V, Rs = 1 k Ω , Vs= 2 V, k= 1 mA/V².

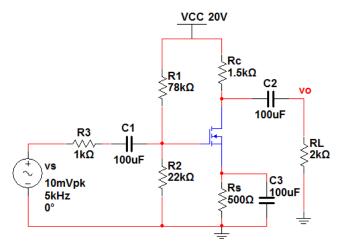


- a) Calcular el punto de polarización.
- b) Dibujar el circuito equivalente de señal.
- c) Suponiendo rD = 100 k Ω , calcular: Av= vo/vg, Avs = vo/vs y Zi.
- d) Recalcular si se saca el capacitor Cs. Comparar resultados.

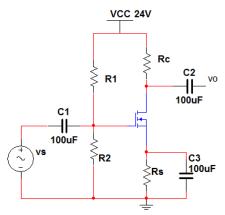
$$VT = 1 V$$

 $k = 1 \text{ mA/V}^2$

Ejercicio 5


Calcular vo/vs.

Ejercicio 6


EÍ MOSFET está polarizado de modo que IDS= 2 mA. Conociendo k= 1mA/V²:

- a) calcular VDS, VGS y gm
- b) Si rd= $50 \text{ k}\Omega$ calcular la ganancia de tensión vo/vs.

Ejercicio 7

Diseñar el amplificador MOSFET de modo que tenga una ganancia de 10. Suponer VGS= 3 V, IDS= 5 mA, VDS= 4V rd= $50 \text{ k}\Omega$, k= 2 mA/V^2 .

