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Abstract

RNAseq is a relatively new tool for ecological genetics that offers researchers insight into changes in gene expression

in response to a myriad of natural or experimental conditions. However, standard RNAseq methods (e.g., Illumina

TruSeq� or NEBNext�) can be cost prohibitive, especially when study designs require large sample sizes. Conse-

quently, RNAseq is often underused as a method, or is applied to small sample sizes that confer poor statistical

power. Low cost RNAseq methods could therefore enable far greater and more powerful applications of transcrip-

tomics in ecological genetics and beyond. Standard mRNAseq is costly partly because one sequences portions of the

full length of all transcripts. Such whole-mRNA data are redundant for estimates of relative gene expression. TagSeq

is an alternative method that focuses sequencing effort on mRNAs’ 3’ end, reducing the necessary sequencing depth

per sample, and thus cost. We present a revised TagSeq library construction procedure, and compare its performance

against NEBNext�, the ‘gold-standard’ whole mRNAseq method. We built both TagSeq and NEBNext� libraries

from the same biological samples, each spiked with control RNAs. We found that TagSeq measured the control RNA

distribution more accurately than NEBNext�, for a fraction of the cost per sample (~10%). The higher accuracy of Tag-

Seq was particularly apparent for transcripts of moderate to low abundance. Technical replicates of TagSeq libraries

are highly correlated, and were correlated with NEBNext� results. Overall, we show that our modified TagSeq proto-

col is an efficient alternative to traditional whole mRNAseq, offering researchers comparable data at greatly reduced

cost.
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Introduction

RNAseq has been widely used to describe differences in

gene expression among wild populations, as well as

changes in captive or wild individuals’ expression fol-

lowing exposure to stimuli (mates, predators, parasites,

abiotic stress, toxins). This work has helped uncover the

genetic basis of complex traits, implicate genes underly-

ing targets of natural selection, and measure the heritable

and environmental components of variation in gene

expression (Pickrell et al. 2010; Lenz et al. 2013; Barribeau

et al. 2014; Foth et al. 2014; Lovell et al. 2015; Videvall

et al. 2015). However, the most widely used RNAseq

protocols are cost-prohibitive for many biologists,

including but not limited to researchers in ecological

genetics.

Construction of any whole mRNAseq library for the

Illumina platform (including Illumina TruSeq� and

NEBNext� kits) involves isolating or enriching for

mRNA, which is then fragmented and subject to mas-

sively parallel sequencing. The resulting data yields

sequences for overlapping portions of the entire lengths

of the original messenger RNAs (hence ‘whole’ mRNA-

seq). This requires high depth of coverage; although

sequencing requirements vary depending on sample

type, the ENCODE Consortium suggests ~30 million raw

reads per sample as a ‘best practice’ for most RNAseq

experiments (The ENCODE Consortium, 2011), limiting

researchers to a maximum of eight samples per lane of

Illumina HiSeq 2500. The high cost of sequencing, com-

bined with high cost of library construction, has forced

many studies to use small sample sizes, or pool samples

within treatments. This is cause for concern, as meaning-

ful differences in gene expression simply may not be

detected with such low-powered sampling designs, and

pooled RNAseq may fail to properly account for residual

variation in expression (Todd et al. 2016).
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To resolve problems with whole mRNAseq, several

low-cost alternatives have been developed. Most notably,

Meyer et al. (2011) presented a 3’ Tag-based approach to

RNAseq, called TagSeq, that requires little input RNA,

involves low library construction costs, and requires

many fewer raw reads per sample. By focusing on the 3’

end of mRNA fragments, TagSeq reduces the sequencing

effort required to characterize a population of mRNAs in

a biological sample. This cost-saving does come with

some constraints: TagSeq cannot distinguish between

alternatively spliced transcripts from a single locus, and

will not identify polymorphism or allele-specific expres-

sion in much of a gene’s coding sequence. Furthermore,

while it may be possible to use TagSeq for genotyping

we choose not to explore that issue here, focusing instead

on gene expression. The benefits of precisely measuring

locus-level transcriptional differences with high replica-

tion may outweigh the lack of splicing or SNP informa-

tion for many experiments in ecological systems.

However, as presented in Meyer et al. (2011), TagSeq

uses a number of outdated methods and enzymes, which

may skew the distribution of RNA fragments in the

library, with respect to both fragment size and GC con-

tent (Aird et al. 2011). In addition, the accuracy of TagSeq

has not yet been compared to the industry standard

TruSeq�/NEBNext� which reliably measures moderate

and high abundance mRNAs in a sample (New England

BioLabs, NEB Next Ultra Directional RNA Library Prep

Kit for Illumina (NEB #E7420S/L), Ipswich, MA, USA).

Here, we present a modified protocol intended to

increase the accuracy and precision of TagSeq, by incor-

porating recent findings on polymerase performance

(Aird et al. 2011), fragmentation methods and bead-

based purification technology into the library construc-

tion process. We then tested the accuracy of TagSeq

against the industry standard NEBNext� by sequencing

technical replicates of a biological sample, each contain-

ing an artificial set of diverse RNAs of known concentra-

tion, designed by the External RNA Controls

Consortium (hereafter simply ‘ERCC’).

Materials and methods

Improvements to TagSeq library construction

Briefly, our improved TagSeq library construction method

involves 11 steps: (i) isolate total RNA, (ii) remove genomic

DNA with DNase (if not included in total RNA isolation),

(iii) fragment total RNA with Mg+ buffer via hydrolysis

(NEB), (iv) synthesize cDNA with a poly-dT oligo, (v) PCR

amplify cDNA, (vi) purify PCR products with DNA-bind-

ing magnetic beads [Agencourt, or made in-house (Roh-

land & Reich 2012)], (vii) fluormetrically quantify PCR

products (PicoGreen, Life Technologies), (viii) normalize

among-sample concentrations, (ix) add sample-specific

barcodes via PCR, (x) pool samples and select a small

range of fragment sizes (to maximize output on the Illu-

mina platform) via automated gel extraction (400–500 bp,

Sage Pippin Prep 2% agarose), (xi) quantify concentrations

of postextraction products via Qubit (dsDNA high sensi-

tivity following the manufacture’s instruction), (xii) nor-

malize among pools. This protocol can be completed by a

single researcher in three days, and this approach is opti-

mized for 96-well format plates. Improvements over the

original protocol are described in Table 1.

Sample acquisition and library preparation

Total RNA was extracted (with Ambion AM1912) from

six freshly isolated stickleback (Gasterosteus aculeatus) head

kidneys stored in RNAlater (Ambion). All fish were lab-

raised, nonsibling, nongravid females, bred via in vitro

crosses of wild caught parents. Three fish originated from

crosses between parents from Gosling Lake, British

Columbia and three fish from crosses between parents

from Roberts Lake, British Columbia (two populations of

the same species). Total RNA from all six head kidneys

was then split, and libraries were constructed with both

whole mRNAseq and TagSeq. The Genomic Sequencing

and Analysis Facility at the University of Texas at Austin

prepared whole mRNAseq libraries (NEBNext� direc-

tional RNA libraries with poly-A enrichment), according

to the manufacturer’s instruction (New England BioLabs,

NEB Next Ultra Directional RNA Library Prep Kit for Illu-

mina (NEB #E7420S/L), Ipswich, MA, USA), for four of

the six RNA samples (two samples dropped to ensure

adequate sequencing depth). ERCC (2 lL of 1:100 dilution

for every 1 lg of total RNA) was added to each sample

before library construction began, according to the manu-

facturer’s instructions. Whole mRNAsq samples were

sequenced on a single lane of Illumina HiSeq 2500

2 9 100, producing an average of 40.5 million paired-end

reads per sample (81 million reads total per sample). Fol-

lowing the addition of ERCC to one technical replicate per

biological sample, TagSeq samples were prepared accord-

ing to Meyer et al. (2011), but with changes detailed in

Table 1. Four TagSeq samples had two technical replicates

(totally independent library builds from total RNA), a fifth

sample had three technical replicates, and a sixth sample

had no technical replicates. 12 TagSeq libraries were

sequenced using three partial lanes of HiSeq 2500 1 9 100

(average of 10.3 million raw reads per sample).

Bioinformatics: How many genes are identified by each
method?

Raw whole mRNAseq reads were trimmed with

CUTADAPT v 1.3 (Martin 2011) to remove any adapter

© 2016 John Wiley & Sons Ltd

2 B . K . LOHMAN, J . N . WEBER and D. I . BOLNICK



contamination. We then mapped the trimmed reads to

version 79 of the stickleback genome (with ERCC

sequences appended) using BWA-MEM (Li & Durbin

2010), and counted genes using Bedtools (Quinlan &

Hall 2010), producing 20 678 total genes. TagSeq reads

were processed according to the iRNAseq pipeline

(https://github.com/z0on/tag-based_RNAseq) (Dixon

et al. 2015), producing 19 145 total genes.

Statistical analysis of control transcripts: How
accurately does each method estimate a known
distribution?

For each sample, we plotted observed counts of artificial

ERCC transcripts against expected values, fitting a sim-

ple linear model (observed ~ expected). We tested for a

difference in mean adjusted R2 value between library

construction methods with a paired t-test (paired by bio-

logical sample).

We calculated the Spearman correlation between

observed logtransformed counts of ERCC transcripts

and expected transcript quantity. We tested for a differ-

ence in mean Rho values between library construction

methods using a paired t-test. We also considered Rho

separately for abundance quartiles.

Statistical analysis of stickleback transcripts: How
similar are estimates of biological RNAs within and
between methods?

We calculated the mean Spearman correlation among

TagSeq technical replicates (n = 5, calculate Rho for each

biological sample and average). We calculated the Spear-

man correlation between stickleback head kidney sam-

ples which had been prepared using both library

construction methods.

Statistical analysis of inline barcodes: Is the current
system for detecting PCR duplicates working?

TagSeq, as presented by Meyer et al. (2011) and here,

uses degenerate inline barcodes on the 5’ end of each

fragment to identify PCR duplicates. We tested for the

random incorporation of these barcodes with a chi-

squared test. We also tested for the effect of increased

GC content within each barcode on the number of times

that barcode was observed with a Poisson GLM. All sta-

tistical analyses were carried out in base R (R Develop-

ment Core Team, 2007).

Results

We found that, when fitting a linear model between the

expected concentrations of ERCC to observed transcript

counts, TagSeq had a significantly higher mean adjusted

R2 value (R2 = 0.89) than NEBNext� (R2 = 0.80, Fig. 1,

observed ~ expected, paired t-test, t = 18.63, d.f. = 3,

P < 0.001). Similarly, the rank correlation between

observed and expected ERCC fragments was consis-

tently higher for TagSeq (mean Rho = 0.94) than

NEBNext� (mean Rho = 0.87, Fig. 2, paired t-test,

t = 12.20, d.f. = 3, P = 0.001). TagSeq showed higher

mean Rho values for all abundance classes except the

Table 1 Changes to Meyer et al. (2011). We identified a number of areas where the Meyer protocol could be improved and

implemented changes to address these concerns

Meyer et al. (2011) Problem Our approach

Measured DNA/RNA

via spectroscopy

Quantification of DNA/RNA by spectroscopy is

inaccurate.

Fluorescent based quantification with Quant-iT

assays.

Included DNase with

total RNA extraction

Genomic DNA contamination leads to nonspecific

amplification.

Increase DNase treatment to 1.59

concentration at 37 °C for 1 h.

Heat and Tris buffer to

fragment total RNA

Fragmentation of total RNA with Tris buffer

produces a wide distribution of fragment sizes.

Precisely fragment total RNA with a

specialized Mg2+ buffer.

No normalizations Yield of first strand synthesis is too variable. Normalize RNA input to 1 lg.
Titanium Taq (Clontech) Variable GC content among fragments can cause

dropout of transcripts (Aird et al. 2011).

Use AccuPrime Taq polymerase and associated

thermal profile for PCR steps (Aird et al. 2011).

Suggest users limit PCR to

15–17 cycles or less

Excessive PCR amplification increases the number

of PCR duplicates.

Reduce number of PCR cycles to 12 or less.

PCR cleanups with spin columns Purification using solid-phase methods (e.g. spin

columns) is not high throughput compatible,

inefficient and costly.

Clean with Agencourt AMPure beads, which

can be made in-house (Rohland & Reich 2012)

No normalizations Post-PCR cDNA amplification yield is highly

variable.

Normalize input to 40 ng total.

Size selection on a per sample

basis via gel extraction

Size selection by standard gel extraction is highly

variable.

Precise size selection with Pippin Prep

automated gel extraction.

Mix individuals samples after

qPCR of every library

Mixing individual libraries based on qPCR is slow

and expensive.

Normalize lanes of Pippin Prep with Qubit

Fluorimeter.
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third quartile. Most notably, whole mRNAseq performed

very poorly in the lowest abundance class (relative con-

centration of 0.014–0.45 attamols/lL), and TagSeq sub-

stantially outperformed whole mRNAseq in the second

abundance class (relative concentration of 0.92–7.3 atta-

mols/lL, Fig. 3).
With respect to stickleback (noncontrol) transcript

counts, the mean Rho among technical replicates of

TagSeq samples was 0.96. Due to the high cost of

NEBNext� library generation and sequencing (~$340
per sample), we did not perform technical replicates

using this method. We found a strong significant pos-

itive correlation between stickleback gene counts gen-

erated with TagSeq and whole mRNAseq (Rho = 0.74,

P < 0.001). This is likely an underestimate of the

actual correlation between the two library construc-

tion methods because whole mRNAseq performs very

poorly when RNAs are in moderate to low abun-

dance (first and second abundance classes, Fig. 3).

Given that 9572 loci are in the bottom half of gene

counts, even small differences in absolute counts

between the methods will strongly influence the rank-

based statistic.

Fig. 1 Regression of observed vs. expected ERCC transcripts shows TagSeq has higher adjusted R2 values for four different biological

samples prepared with both methods (paired t-test, t = 18.63, d.f. = 3, P < 0.001).

Fig. 2 TagSeq more accurately recovers a known distribution of

control mRNA fragments (ERCC) than whole mRNAseq (mean

Rho for TagSeq is higher than mean Rho for whole mRNAseq,

paired t-test, t = 12.20, d.f. = 3, P = 0.001).
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We also wished to compare our new method with

that of the original TagSeq protocol, but cannot make a

direct comparison with the available samples. Meyer

et al. (2011) evaluated their accuracy by comparing fold-

differences in differentially expressed genes (between

experimental treatments), whereas we measured accu-

racy using estimates of relative ERCC abundance. Keep-

ing in mind these different benchmarking methods, we

can draw a rough comparison. The original TagSeq

method yielded a correlation of r = 0.86 between TagSeq

estimates of fold-change expression, and qPCR measures

of the same fold change (a ‘known’ benchmark). In con-

trast, our protocol yields a correlation of Rho = 0.94

between our relative abundance estimates, and the

known ERCC relative abundances. We infer that the new

protocol performs at least as well, and probably better,

than the previous protocol, at generating expression level

estimates that resemble known values.

The iRNAseq pipeline includes the removal of PCR

duplicates, which are a common problem in many

library construction methods (Aird et al. 2011). Any

reads which meet two criteria are called PCR duplicates

and removed: (i) identical in-line barcodes (the four

degenerate bases at the start of each read), and (ii) the

first 30 bases of sequence after the in-line barcode are

identical. The removal of PCR duplicates substantially

reduces the number of TagSeq reads in each library

(mean reduction of 70.3%, n = 12). However, this

avoids potential bias introduced by PCR, namely

over-representation of smaller fragments. We found that

inline barcodes were incorporated nonrandomly (Chi

Square = 10 500 000, d.f. = 63, P � 0.001). We found

that increased GC content in the inline barcode signifi-

cantly reduced the number of times a barcode was

observed. For every G or C added to the inline barcode,

the expected value of the number of observed barcodes is

reduced by ~2.9% (count ~ gcContent, family = poisson,

bgcContent = �0.133, P < 0.001).

Discussion

We present a number of methodological improvements

to the TagSeq method of Meyer et al. (2011), and take the

important next step of comparing the new protocol to

the NEBNext� kit, the industry-standard for whole

mRNAseq. Overall, our results illustrate that the

updated TagSeq method offers researchers the ability to

dramatically increase sample sizes in gene expression

analyses, which will greatly increase statistical power to

detect subtle differences in transcript abundance than

traditional whole mRNAseq methods. Furthermore, Tag-

Seq promises improved accuracy when measuring med-

ium and low abundance RNAs. We speculate that this

increase in sensitivity derives from a more efficient dis-

tribution of reads among loci, probably due to a reduced

connection between gene length and transcripts counted

per locus. In total RNAseq, even if two transcripts are

expressed at identical levels, random fragmentation and

priming leads to greater representation of longer frag-

ments in sequencing libraries (Trapnell et al. 2010;

Roberts et al. 2011). In contrast, TagSeq only primes the

3’ poly-A tail, generating an essentially uniform distribu-

tion of fragments with respect to original RNA length.

While TagSeq has been used predominantly in corals

(Des Marais et al. 2015; Dixon et al. 2015), it should be

applicable to nearly all metazoans. However, we caution

researchers to perform several basic checks during Tag-

Seq library construction, most especially ensuring the

size distribution of RNA fragments is as narrow as possi-

ble during total RNA fragmentation. We recommend

evaluating the results of various total RNA fragmenta-

tion times via BioAnalyzer. Fragments should be larger

than 100 bp and smaller than 500 bp (see Appendix S1,

Supporting information). Here, we were interested in

evaluating the robustness of the TagSeq method for

threespine stickleback, and therefore sequenced stickle-

back transcripts more deeply than required for an accu-

rate estimate of gene expression across the majority of

expressed loci (we generated an average of 10.3 million

raw reads per sample). We recommend that researchers

dedicate roughly ~5–6 M raw reads per sample if the goal

is to measure the top 75% of all expressed mRNAs in a

sample, as this has produced sufficient gene counts for

Fig. 3 Breakdown of control mRNAs by abundance class shows

that TagSeq recovers mRNAs better than TruSeq, especially at

lower abundances. Light grey bars are TagSeq, dark grey bars

are whole mRNAseq. Fences indicate standard error.
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robust statistical power in an invertebrate, a plant and

stickleback (M. Matz and T. Jeunger, personal communi-

cations).

In this project, we intentionally under-loaded our

TagSeq libraries on the HiSeq lane by 15% (0.0017 pmols

loaded), anticipating that low base diversity in the 5’ end

of the fragments (caused by the inline barcode used to

detect and remove PCR duplicates) would lead to poor

clustering. However, quality metrics from the HiSeq run

indicate that this is not a problem. We observed ~500–
600 clusters per mm2 on each tile, and the majority of

these clusters passed filtering (low base diversity or

overclustering would generate large numbers of clusters

with few passing filtering). We therefore recommend

that users load standard amounts of library (or even 10–
20% extra material) on each lane of HiSeq (see

Appendix S1, Supporting information). Specifically,

overloading TagSeq libraries may help to increase raw

read yield, relative to NEBNext�, which we found to

optimally cluster when 0.002 pmols were loaded (~1000
clusters per mm2). We also emphasize that small frag-

ments need to be removed from TagSeq libraries, as they

will more easily cluster on the HiSeq, reducing read out-

put. These may be identified by BioAnalyzer and

removed with additional bead clean-ups.

Several of our methodological changes aimed to miti-

gate the number of PCR duplicates, which are artefacts

of all PCR-related methods. First, we predicted that

increasing the degenerate inline barcodes from four to

six bases would not only increase our ability to detect

independent transcripts from PCR duplicates, but also

increase base diversity on the 5’ end of fragments,

thereby increasing the number of clusters passing Illu-

mina’s quality filters. However, this alteration did not

completely remove the problem of PCR duplicates or

increase the number of raw reads generated in each lane

(data not shown). In the future we recommend that pro-

tocol users consider adding 3-nitropyrrole to the inline

barcode region, as this should better randomize which

bases are incorporated during initial round of PCR (Sch-

weyen et al. 2014). Second, we limited our number of

PCR cycles to 12. Empirically testing the effects of PCR

cycle number on TagSeq accuracy was outside the scope

of the present study. However, it is widely accepted that

the best way to limit bias is to reduce the number of PCR

cycles during cDNA amplification as much as possible

(Aird et al. 2011).

Because TagSeq reads map to relatively small, 3’

regions of genes, when paralogs harbour few sequence

differences, this method may only be able to distinguish

patterns of expression at the gene family level. Although

it is worth being aware of this limitation, paralogy prob-

lems are not unique to TagSeq. Quantifying the expres-

sion levels of paralogs (or copy number variants) can be

very difficult; it often necessitates high-quality reference

genome sequences, and factors such as the frequency,

evolutionary age and expression differences between

duplicated loci can greatly complicate analyses even

when whole mRNA sequences are available.

In summary, we show that the improved TagSeq

method has both benefits and drawbacks compared to

traditional whole mRNA sequencing. While our TagSeq

libraries did not generate optimal numbers of clusters on

the HiSeq platforms, we identify several potential solu-

tions to the problem. Regardless of the slightly lower

number of raw reads, our improved TagSeq method is

overwhelmingly more cost effective than whole mRNA-

seq. At maximal efficiency (32 individuals per sequenc-

ing lane), our method was able to produce highly

accurate, transcriptome-wide gene counts for only ~$33
per sample (down from Meyer et al. (2011)’s ~$50 per

sample), including sequencing costs (HiSeq 2500

1 9 100 V3 chemistry with ~5.6 M raw reads per sam-

ple). This low cost and high reliability offers molecular

ecologists the opportunity to vastly increase sample sizes

and increase replication to uncover new patterns in gene

expression.
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