Organización de computadoras

Clase 6

Universidad Nacional de Quilmes

Lic. Martínez Federico

¿Qué vimos?

- Pila
 - Push
 - Pop
- Modularizar
- Reusar
- Call y Ret
- Q5

¿Qué vimos?

¿JMP y CALL no son lo mismo?

NO

¿Qué hay para hoy?

- Números con punto fijo
- Interpretación
- Representación
- Rango
- Resolución
- Error absoluto
- Error relativo
- El súper TP ☺

Recordemos el principio:

 – "En el principio creó Dios a los números binarios y dijo: Sean BSS y CA2, y que se pueda operar fácilmente con ellos. Y vio que eso era bueno"

• ¿Y si necesitamos números fraccionarios?

• ¿Cómo hacemos en decimal?

Usamos la coma ","

• ¿Cómo interpretamos en decimal?

$$-10,1:1*10^{1}+0*10^{0}+1*10^{-1}$$

$$-8,01:8*10^{0}+0*10^{-1}+1*10^{-2}$$

$$-2,141:2*10^{0}+1*10^{-1}+4*10^{-2}+1*10^{-3}$$

Sistema	0,1	0,01	0,001
Decimal	$10^{-1} = 1/10$	$10^{-2} = 1/100$	$10^{-3} = 1/1000$
Binario	$2^{-1} = 1/2$	$2^{-2} = 1/4$	$2^{-3} = 1/8$

Interpretar:

$$>101,1 = 2^2+2^0+2^{-1}=5,5$$

$$>110,001 = 2^2+2^1+2^{-3}=6,125$$

$$>10,111 = 2^1 + 2^{-1} + 2^{-2} + 2^{-3}$$

• Problema:

No tenemos la coma en binario!!

Solución:

Podemos fijar cuantos números hay después de la coma

 Ejemplo en decimal: Si trabajamos con 2 números después de la coma, ¿cuáles son los digitos decimales?

$$-10001 = 100,01$$

$$-34233 = 342,33$$

$$-67847 = 678,47$$

$$-544 = 5,44$$

$$-78 = 0.78$$

Podemos hacer lo mismo en binario:

 BSS(n,m): Binario sin signo con n y de ellos m son fraccionarios

• Ejemplo: BSS(4,2): Binario sin signo con 4 bits con 2 bits fraccionarios (y 2 enteros)

Interpretacion

Interpretar las siguientes cadenas en BSS(7,3):

>000001

>0101011

>0010110

>1000000

Interpretación

Método alternativo:
 Para interpretar una cadena en BSS(n,m) la interpreto en BSS(n) y divido el resultado por 2^m

Ejemplo: 0101011 en BSS(7,3)

Rango

- Intervalo de números representables
- Ejemplo: BSS(6,4)
 - Mínimo: 000000 \rightarrow 0
 - Máximo: 111111 → 3,9375
 - Rango: [0, 3,9375]

Resolución

• Si el rango de BSS(6,4) es [0, 3,9375], significa que cualquier número en ese intervalo puede ser representado correctamente en el sistema?

Ejemplo:

 $000000 \rightarrow 0$

 $000001 \rightarrow 0,0625$

El 0,06 por ejemplo no se puede representar exactamente

Resolución

Distancia entre dos números representables consecutivos.

• En punto fijo, es constante.

Resolución

- Ejemplos: Calcule la resolución de estos sistemas:
 - -BSS(8,5)
 - -BSS(2,1)
 - -BSS(6,4)
 - -BSS(10000,1)

Representación

- Método 1:
 - La parte entera del número en BSS
 - Para la parte fraccionaria aplicamos multiplicaciones sucesivas
 - Redondear si es necesario

Ejemplo: Representemos el 3,14 en BSS(7,4)

Ejercicios

- Representar en BSS(8,4):
 - -10,2
 - -0,125
 - -0,099
 - -3,75
 - -20,9

Representación

Método 2:

- Multiplicar al número por 2^q siendo q la cantidad de bits fraccionarios que se tiene
- Redondear ese número al entero mas cercano (M)
- Representar M en BSS

Ejemplo: Representemos el 3,14 en BSS(7,4)

Ejercicios

- Representar en BSS(8,4):
 - -1,1
 - -2,125
 - -3,099
 - -4,75
 - -19,99

Error

Hay números que no se pueden representar exactamente.

• Existe entonces un error de representación

Error absoluto

 Es la diferencia entre el número que se quería representar y el que finalmente se represento

 EA = | N – Ñ | donde N es el número original y Ñ el número representado

Ejercicios

- Calcule el error absoluto al representar los siguientes números en BSS(9,4):
 - -1,1
 - -2,125
 - -3,099
 - -4,75
 - -19,99

Error relativo

El error absoluto puede ser engañoso

A veces un error chico duele mas que uno grande

 El error relativo tiene en cuenta que número se estaba queriendo representar

Error relativo

$$ER = EA/N$$

(con N!= 0)

Error relativo

• Como depende del número, no es constante

- Ejemplos:
 - Calcular los errores relativos al representar en BSS(4,4):
 - 0,1
 - 15,1
- ¿Dónde ocurren los errores relativos mas grandes?

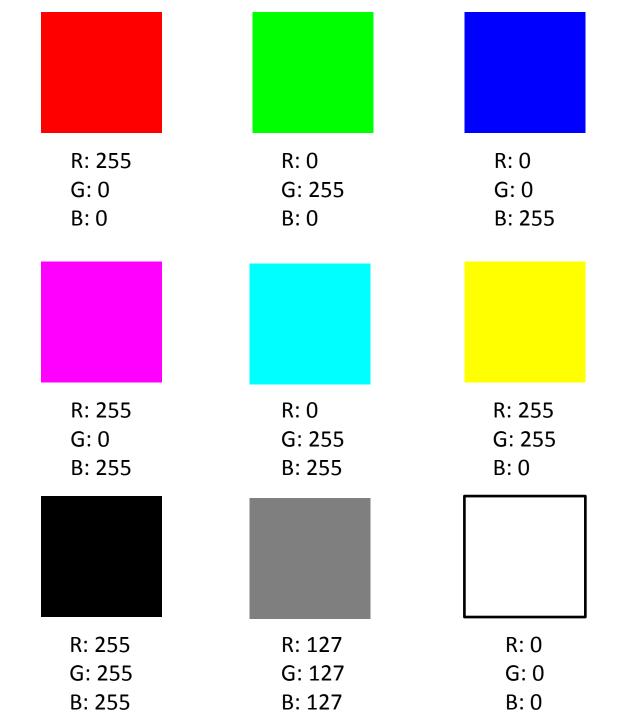
 Programar en ASM de una arquitectura real (x86)

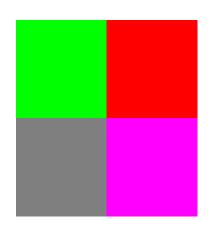
Implementar un algoritmo con resultados visibles

- ASM de intel:
- Registros: EAX, EBX, ECX, EDX, ESI y EDI.

Las direcciones tienen 32 bits

Posee flags de carry, overflow, negative y zero.

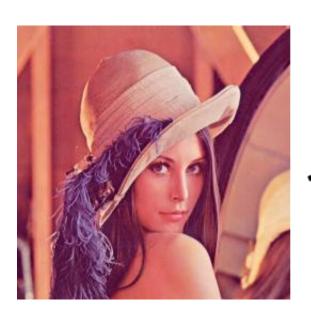

 Muchas de las instrucciones son conocidas: MOV, ADD, CMP, SUB, JE, JMP, etc


Trabajamos sobre imágenes en formato BMP

La imagen esta formado por pixeles

Cada pixel tiene 3 componentes: R G B

Toman valores en [0,255] (1 byte)


Dirección	Contenido
0xA0000000	0x00000000
0xA0000001	0x000000FF
0XA0000002	0x000000F
0XA0000003	0x000000FF


Dirección	Contenido
0xCA000000	0x000000FF
0xCA000001	0x00000000
0XCA000002	0x000000F
0XCA000003	0x00000000

Dirección	Contenido
0x00E00000	0x00000000
0x00E00001	0x00000000
0X00E00002	0x000000F
0X00E00003	0x000000FF

Objetivo

Monocromatizar imágenes

Hay que entregar el código

Imágenes usadas para probar

El enunciado completo en el blog!

Concluyendo

- Números fraccionarios
- Interpretación
- Representación
- Rango
- Resolución
- Errores:
 - Absoluto
 - Relativo
- TP