

PROGRAMA ANALÍTICO DE LA ASIGNATURA BIOQUÍMICA DE ALIMENTOS Modalidad Libre

Departamento de Ciencia y Tecnología Carrera Ingeniería en Alimentos

Núcleo Superior Obligatorio I

Prerrequisito obligatorio: Química de los Alimentos

Carga horaria total: 72 horas

Docente: Paula Sceni

Año lectivo: 2023 y 2024

Objetivos

Los objetivos para quienes cursen la asignatura son:

- Estudiar aspectos bioquímicos y fisiológicos de la digestión, absorción y metabolismo de macronutrientes.
- Conocer las características estructurales de los principales nutrientes y sus funciones en el organismo humano.
- Conocer los aspectos fundamentales de la calidad nutricional y analizar la influencia de las condiciones de procesamiento y almacenamiento.
- Conocer las principales rutas metabólicas de los macronutrientes.

Saberes profesionales

En la asignatura se propician los siguientes saberes profesionales:

- Identificar, formular y resolver problemas de ingeniería en alimentos.
- Utilizar técnicas y herramientas de aplicación en la ingeniería en alimentos.
- Comunicarse de manera efectiva.

Contenidos mínimos: Metabolismo. Reacciones anabólicas y catabólicas. Valores nutricionales de los componentes de los alimentos. Interacción alimento-organismo. Elementos de fisiología y nutrición humana. Fotosíntesis.

Programa analítico

Unidad 1. Calidad nutricional. Clasificación de nutrientes según esencialidad y cantidad de ingesta. Biodisponibilidad de nutrientes. Efectos sinérgicos y antagónicos entre nutrientes. Calidad nutricional de macronutrientes. Evaluación de la calidad proteica por métodos químicos y biológicos. Complementación y suplementación. Requerimientos energéticos. Metabolismo basal. Cálculo del gasto energético total del organismo y factores determinantes. Energía bruta, energía metabolizable y energía neta de los alimentos. Pérdidas de la calidad nutricional de alimentos por tratamientos tecnológicos (tratamientos térmicos, refinado, pelado, etc.). Rótulo nutricional.

Unidad 2. Proceso de nutrición. Procesos de digestión, absorción, asimilación y eliminación. Sistemas y aparatos de órganos involucrados. Microbiota intestinal.

Unidad 3. Introducción al metabolismo. Características generales de las rutas metabólicas. Anabolismo y catabolismo. Función del ATP. Fosforilación oxidativa y fosforilación a nivel sustrato.

Unidad 4. Nutrición y metabolismo de hidratos de carbono. Hidratos de carbono asimilables. Función nutricional. Digestión, absorción y transporte. Índice glucémico. Diabetes. Intolerancia a la lactosa. Principales rutas metabólicas: glucólisis, descarboxilación oxidativa del piruvato, ciclo de Krebs, fosforilación oxidativa, gluconeogénesis, glucogenólisis, glucogenogénesis.

Hidratos de carbono no asimilables: Fibra alimentaria y prebióticos. Funciones.

Unidad 5. Nutrición y metabolismo de lípidos. Lípidos de origen animal y vegetal. Función nutricional. Digestión, absorción y transporte. Ácidos grasos esenciales: ingesta recomendada y alimentos que los contienen. Obesidad, ateroesclerosis y enfermedad coronaria. Principales rutas metabólicas: beta oxidación, síntesis de ácidos grasos, cetogénesis y cetólisis, síntesis de colesterol, catabolismo del etanol.

Unidad 6. Nutrición y metabolismo de proteínas y aminoácidos. Proteínas y aminoácidos. Funciones nutricionales. Digestión, absorción, transporte y eliminación.

Celiaquía. Principales rutas metabólicas: transaminación, desaminación oxidativa, ciclo de la urea, ciclo de la glucosa-alanina, síntesis de aminoácidos.

Unidad 7. Agua y micronutrientes. Necesidad hidromineral. Función del agua en el organismo. Equilibrio hídrico. Minerales. Clasificación nutricional en macroelementos, microelementos y ultratrazas. Vitaminas hidrosolubles (complejo B y vitamina C) y liposolubles (A, D, E y K). Absorción y excreción. Carencias y excesos de vitaminas y minerales. Alimentos fuente, enriquecimiento y fortificación con vitaminas y minerales. Otros micronutrientes: polifenoles, fitoestrógenos, terpenos, esteroides, etc.

Unidad 8. Sistemas alimentarios. Carne: Composición. Bioquímica de la carne. Proceso de contracción muscular. Ciclo de Cori. Rigor mortis. Maduración. Leche. Composición. Nutrientes de la leche. Fermentación láctica

Alimentos vegetales: frutas, verduras, legumbres y cereales. Nutrientes y antinutrientes. Fitoquímicos. Fermentación alcohólica en panificados y bebidas.

Trabajo Práctico

Los objetivos del TP integrador son:

Trabajo práctico integrador. Calcular la composición nutricional del producto a partir de la composición de sus ingredientes. Analizar en forma teórica la calidad nutricional del producto y proponer mejoras nutricionales. Realizar el rótulo nutricional del producto según especificaciones del CAA.

Bibliografía

Bibliografía obligatoria

- Blanco. A. Química Biológica. 11va edición (2016). Editorial el Ateneo.
- Cuellas, A.V y Wagner, J.R. (2011). Nutrición. Fundamentos energéticos y metabólicos. Editorial UNQ.
- Martínez, A., Portillo, M. (2018). Fundamentos de Nutrición y Dietética. Editorial médica Panamericana.

Bibliografía de consulta

Barone, L. R., Rodríguez, C., Ghiglioni, M., González, C. D., & Luna, S. S. (2004).
 Anatomía y fisiología del cuerpo humano. Argentina: Cultural Librera Americana SA.

Formas de evaluación y acreditación

La modalidad de evaluación y aprobación se regirá según el Régimen de Estudios vigente.

En la mesa de examen libre se evaluarán los temas de la asignatura con las siguientes instancias de evaluación:

- Un examen con una parte escrita y una oral, que incluirán contenidos teóricos y resolución de problemas.
- Un trabajo práctico que el/la estudiante deberá presentar de manera escrita y defender oralmente. La consigna del TP será dada una semana antes de la mesa de examen.