

PROGRAMA ANALÍTICO DE LA ASIGNATURA CÁLCULO AVANZADO

Modalidad Regular

Departamento de Ciencia y Tecnología
Carrera Ingeniería en Alimentos
Núcleo Superior Obligatorio I

Prerrequisito obligatorio: Análisis Matemático IIA

Carga horaria total: 72 horas

Docentes: Sebastián Oddone - Antonella Pucheta

Año lectivo: 2023 y 2024

Objetivos

Los objetivos para quienes cursen la asignatura son:

- Comprender la relación de sistemas del mundo físico con la representación matemática de los mismos.
- Adquirir las habilidades para poder resolver ecuaciones diferenciales.
- Desarrollar experiencia de resolución de problemas numéricos con software.

Saberes profesionales

En la asignatura se propician los siguientes saberes profesionales:

- Identificar, formular y resolver problemas de ingeniería en alimentos.
- Utilizar técnicas y herramientas de aplicación en la ingeniería en alimentos.

Contenidos mínimos: Algebra lineal. Aplicaciones de las Series de Fourier. Aplicaciones de las sucesiones, series numéricas y de funciones. Transformadas de Fourier y Laplace. Aplicación a la resolución de ecuaciones diferenciales ordinarias y parciales. Aplicación al cálculo estadístico. Métodos numéricos

Programa analítico

Unidad 1: Modelado matemático, clasificación de los modelos, modelos de parámetros globales y de parámetros distribuidos. Modelos en derivadas totales y parciales, condiciones iniciales y de contorno. Principales aplicaciones en procesos de la industria de los alimentos

Unidad 2: Modelos representados por ecuaciones diferenciales ordinarias. Resolución por separación de variables. Aplicación a balances de materia en procesos de la industria de los alimentos y bebidas.

Unidad 3: Resolución por factor integrante. Aplicación en balances de materia y energía. Desarrollo y análisis de diferentes modelos.

Unidad 4: Introducción al uso de software de simulación. Simulación de problemas de valor inicial.

Unidad 5: Introducción a los métodos numéricos en Ingeniería. Ecuaciones algebraicas y sistemas de ecuaciones. Sustitución directa.

Unidad 6: Algoritmos de resolución de ecuaciones diferenciales ordinarias por métodos numéricos. Euler, Runge Kutta.

Unidad 7: Resolución de ecuaciones diferenciales en derivadas parciales utilizando el método de diferencias finitas.

Unidad 8: Series y Transformada de Fourier. Desarrollo en series de potencia. Transformada de Laplace.

Unidad 9: Resolución de sistemas de ecuaciones ordinarias lineales utilizando técnicas de álgebra lineal.

Bibliografía

Bibliografía obligatoria

 Basmadjian, D. (2007). The art of modeling in Science and Engineering with Mathematica. Editorial Chapman & Hall.

- Zill, D. (2014). Ecuaciones diferenciales con aplicaciones de modelado. Décima
 Edición. Editorial. Cengage Learning.
- Nakamura, S. (1997). Análisis y Visualización Gráfica con MATLAB. Editorial Prentice Hall. México.

Bibliografía de consulta

 Fogler, H. (2001). Elementos de Ingeniería de las Reacciones Químicas. Tercera Edición. Editorial Prentice Hall. México.

Organización de las clases

La asignatura es teórico-práctica, con una carga de 36 horas de actividades prácticas, distribuidas en clases de resolución de problemas y ejercicios con el uso de computadora.

Clase expositiva: Todos los temas son expuestos y explicados en clase utilizando pizarrón, presentaciones con diapositivas, videos, etc. Las clases se desarrollan en un ambiente tendiente a promover el diálogo y la formulación de preguntas a fin de favorecer la comprensión de los diferentes contenidos disciplinares. Se trata de proporcionar ejemplos de interés general o en relación con la Ingeniería en Alimentos.

Clase de resolución de problemas y ejercicios: El estudiantado resuelve problemas y ejercicios en papel y con el uso de computadora. En estas clases prácticas el equipo docente atiende consultas individuales o grupales vinculadas con las actividades propuestas. Se promueve la participación activa del estudiantado en un ambiente de discusión, favoreciendo la expresión escrita y oral.

Los recursos didácticos empleados en la asignatura son: pizarra o pizarrón, material digital multimedia y computadoras con software específico (GNU Octave).

Formas de evaluación y acreditación

La modalidad de evaluación y aprobación se regirá según el Régimen de Estudios vigente.

Durante la cursada se tomarán dos parciales con sus respectivos recuperatorios y un integrador, en caso de no promocionar.

Cronograma tentativo

Clase	Tema	Tipo de actividad
1	Presentación de la materia, objetivos. Modelado matemático, clasificación de los modelos, modelos de parámetros globales y de parámetros distribuidos. Modelos en derivadas totales y parciales, condiciones	
	iniciales y de contorno. Principales aplicaciones en procesos de la industria de los alimentos.	·
2	Modelos representados por ecuaciones diferenciales ordinarias. Resolución por separación de variables. Aplicación a balances de materia en procesos de la industria de los alimentos y bebidas.	Clase expositiva / Resolución de problemas y ejercicios.
3	Modelos representados por ecuaciones diferenciales ordinarias lineales. Resolución por factor integrante. Aplicación en balances de materia y	
	energía. Desarrollo y análisis de diferentes modelos.	Clase expositiva / Resolución de problemas y ejercicios.
4	Introducción al uso de software de simulación MATLAB	Clase expositiva / Resolución de problemas y ejercicios.
5	Simulación de problemas de valor inicial. Funciones ode23 y ode45.	Clase expositiva / Resolución de problemas y ejercicios.
6	Introducción a los métodos numéricos en Ingeniería. Ecuaciones algebraicas y sistemas de ecuaciones. Sustitución directa.	Clase expositiva / Resolución de problemas y ejercicios.
7	PRIMER PARCIAL	Examen individual
8	RECUPERATORIO	Examen individual
9	Algoritmos de resolución de ecuaciones diferenciales ordinarias por métodos numéricos. Euler, Runge Kutta.	Clase expositiva / Resolución de problemas y ejercicios.
10	Resolución de ecuaciones diferenciales en derivadas parciales utilizando el método de diferencias finitas.	Clase expositiva / Resolución de problemas y ejercicios.

11	Problemas de aplicación en software.	Clase expositiva / Resolución de
		problemas y ejercicios.
12	Series y Transformada de Fourier.	Clase expositiva / Resolución de
	Desarrollo en series de potencia.	problemas y ejercicios.
13	Transformada de Laplace	Clase expositiva / Resolución de
		problemas y ejercicios.
14	Álgebra Lineal	Clase expositiva / Resolución de
		problemas y ejercicios.
15	Álgebra Lineal	Clase expositiva / Resolución de
		problemas y ejercicios.
16	SEGUNDO PARCIAL	Examen individual
17	RECUPERATORIO	Examen individual
18	INTEGRADOR	Examen individual