

PROGRAMA ANALÍTICO DE LA ASIGNATURA TÉCNICAS ANALÍTICAS INSTRUMENTALES Modalidad Regular

Departamento de Ciencia y Tecnología

Carrera Ingeniería en Alimentos

Ciclo Inicial - Núcleo Obligatorio

Correlativas: Química Orgánica Carga horaria total: 108 horas

Docentes: Alejandro Ferrari - Gerardo Caballero - Carolina Martínez - Juan Abdusetir -

Diego Vázquez.

Año lectivo: 2023 y 2024

Objetivos

Los objetivos para quienes cursen la asignatura son:

- Comprender los principios generales de los métodos instrumentales más importantes
- Comprender la naturaleza del problema analítico y establecer una estrategia de resolución
- Correlacionar las propiedades físicas y químicas del analito, y el tipo de matriz en la que se encuentra el analito, con el método instrumental a utilizar.
- Interpretar la información estructural y cuantitativa obtenida con los métodos instrumentales más importantes.
- Aprender a manejar las herramientas estadísticas necesarias para determinar parámetros quimiométricos que reflejen la calidad de los datos obtenidos.
- Interpretar normas, literatura científica, etc. relacionadas con la resolución de problemas cualitativos y cuantitativos en matrices complejas (biológicas y alimentos) y su evaluación.
- Poder comunicarse con facilidad con especialistas en química instrumental.

Saberes profesionales

En la asignatura se propician los siguientes saberes profesionales:

- Utilizar técnicas y herramientas de aplicación en la ingeniería en alimentos.
- Desempeñarse de manera efectiva en equipos de trabajo.
- Comunicarse de manera efectiva.

Contenidos mínimos: Métodos espectroscópicos, cromatográficos, electroquímicos y electroforéticos. Introducción a la quimiometría. Determinación de estructuras con métodos instrumentales. Métodos cromatográficos acoplados a espectrometría de masa.

Programa analítico

Unidad 1. Espectroscopia molecular ultravioleta-visible. Introducción a la espectroscopia. Interacción de la luz con la materia. Análisis cuantitativo: Ley de Lambert-Beer. Espectros moleculares de absorción. Transiciones electrónicas. Cromóforos y auxocromos. Aplicaciones orgánicas e inorgánicas. Caracterización de grupos funcionales. Instrumental.

Unidad 2. Espectroscopia infrarroja. Vibraciones moleculares. Descripción clásica y cuántica. Bandas características de grupos funcionales. Aplicaciones cualitativas. Instrumental.

Unidad 3. Espectrometría de resonancia magnética nuclear. Niveles de energía nucleares. Descripción cuántica y clásica del fenómeno. Spin nuclear. Apantallamiento. Desplazamiento químico. Multiplicidad de las señales. Acoplamiento spin-spin. Aplicaciones: predicción de estructuras moleculares. Instrumental.

Unidad 4. Espectrometría de masa. Fragmentaciones moleculares. Ion molecular y pico base. Componentes isotópicos. Clusters. Patrones de fragmentación. Determinación de la fórmula molecular. Postulación de estructuras moleculares. Instrumental.

Unidad 5. Evaluación de datos analíticos. Introducción a la Quimiometría. Errores experimentales. Estadística de medidas repetidas. Precisión y exactitud. Límite de detección. Sensibilidad. Métodos de calibración. Regresión lineal. Aseguramiento de la calidad analítica.

Unidad 6. Espectroscopia luminiscente. Estados singlete y triplete. Espectros de excitación y de emisión. Fluorescencia y fosforescencia. Decaimiento no radiativo. Quenching. Eficiencia cuántica. Emisión y estructura molecular. Aplicaciones. Instrumental. Quimioluminiscencia.

Unidad 7. Espectroscopia atómica. Transiciones electrónicas en átomos. Absorción y emisión atómica. Atomización térmica y electrotérmica. Emisión por plasma inducido. Aplicaciones. Instrumental.

Unidad 8. Cromatografía gaseosa . Introducción a la cromatografía. Parámetros de retención y de eficiencia. Dispersión en la columna: ecuación de Van Deemter Mecanismos de retención: adsorción y reparto gas-líquido. Fases estacionarias y tipos de columnas. Optimización de la separación. Temperatura programada. Instrumentación. Derivatización. Extracción head-space. Pretratamiento de muestras. Análisis cuantitativo.

Unidad 9. Cromatografía líquida. Mecanismos de retención: adsorción, interacción hidrofóbica, intercambio iónico, pares iónicos, exclusión molecular. Elución con gradiente. Instrumental. Derivatización. Pretratamiento de muestras.

Unidad 10. Otras técnicas. Métodos radioquímicos. Electroforesis capilar. Cromatografía gaseosa acoplada a espectrometría de masa. Potenciometría.

Unidad 11. Aseguramiento de la calidad en laboratorios. Definición de calidad. Organización de un sistema de calidad. Normas ISO, buenas prácticas. Requerimientos generales, monitoreo y control.

Trabajos prácticos de laboratorio

La nómina de TP y sus objetivos son:

TP N°1: Caracterización de moléculas por espectrofotometría UV-visible y comprobación de la Ley de Lambert y Beer. Conocer el manejo del espectrofotómetro UV-visible. Registrar espectros de absorción de moléculas orgánicas e inorgánicas. Comprobar corrimientos de los máximos de absorción. Confección y ajuste de curva de Calibración según parámetros de calidad analítica. Comprobación de la ley de Lambert-Beer.

TP N°2: Análisis cuantitativo por espectrofotometría UV-visible. Aprender a procesar muestras sólidas y/o líquidas para su análisis químico. Cuantificar una sustancia problema utilizando la recta de calibración ajustada y mediante la aplicación de métodos colorimétricos.

TP N°3: Análisis cualitativo y cuantitativo de emisión fluorescente. Obtener los espectros de excitación y emisión de la fluoresceína. Aprender a manejar un espectrofotómetro compacto para análisis de micromuestras. Cuantificar un analito mediante un método de calibración externa y la medida de absorbancia e intensidad de emisión.

Bibliografía

Bibliografía obligatoria:

- Skoog, D. A., Holler, J. F., & Crouch, S. R. (2008). Principios de análisis instrumental (6a. ed.). Madrid: Cengage Learning.
- Harris, D. C. (2010). Quantitative chemical analysis (8th ed.). New York: Freeman.
- Rouessac, F., Rouessac, A. (2003). Análisis químico: Métodos y técnicas instrumentales modernas. Madrid: McGraw-Hill.
- Carey, F. (1999) Química Orgánica. (3a ed.) México, Mc Graw Hill.

Bibliografía general de consulta:

- Bruice, P. Y. (2008). Química orgánica (5a. ed.). Naucalpan de Juárez, Edo. de México: Pearson Educación.
- Willard, H. H., Merritt, L. L., Dean, J. A., & Settle, F. (1991). Métodos instrumentales de análisis. México, DF: Grupo Editorial Iberoamérica.
- Silverstein, R. M., & Webster, F. X. (1997). Spectrometric identification of organic compounds (6a. ed.). New Yok: J. Wiley.

Organización de las clases

La asignatura es teórico-práctica, con una carga de 36 horas de actividades prácticas, distribuidas entre clases experimentales en laboratorio y resolución de problemas y análisis de casos.

Clase expositiva: Todos los temas son expuestos y explicados en clase utilizando pizarrón, presentaciones con diapositivas, videos, etc. Las clases se desarrollan en un ambiente tendiente a promover el diálogo y la formulación de preguntas a fin de favorecer la comprensión de los diferentes contenidos disciplinares. Se trata de proporcionar ejemplos de interés general o en relación con la Ingeniería en Alimentos.

Clase de resolución de problemas y análisis de casos: El estudiantado cuenta con guías de actividades que incluyen preguntas, problemas y análisis de casos que se resuelven y/o discuten en el aula. En estas clases prácticas el equipo docente atiende consultas individuales o grupales vinculadas con las actividades propuestas. Se promueve la participación activa del estudiantado en un ambiente de discusión, favoreciendo la expresión escrita y oral.

Clase experimental en laboratorio: Implica el uso de procedimientos científicos de diferentes características: observación, formulación de hipótesis, realización de experimentos, discusión de resultados, elaboración de conclusiones, entre otros. Con estas actividades se promueve el desarrollo del pensamiento crítico y el trabajo en equipo.

Los recursos didácticos empleados en la asignatura son: pizarra o pizarrón, material digital multimedia, textos, aula virtual y materiales de laboratorio de química.

Formas de evaluación y acreditación

La modalidad de evaluación y aprobación se regirá según el Régimen de Estudios vigente.

Las instancias evaluativas calificadas constan de dos parciales escritos y sus respectivos recuperatorios escritos, tres parcialitos, tres trabajos prácticos calificados y tres informes de los mismos, y un examen integrador escrito (en caso de no promocionar).

Cronograma tentativo

Clase	Tema	Tipo de actividad
1	Introducción métodos analíticos	Clase expositiva
2	Espectroscopia ultravioleta	Clase expositiva
3	Espectroscopia ultravioleta	Clase expositiva
4	Espectroscopia ultravioleta	Resolución de problemas
5	Espectroscopia infrarroja	Clase expositiva
6	Espectroscopia infrarroja	Resolución de problemas
7	Espectroscopia RMN	Clase expositiva
8	Espectroscopia RMN	Clase expositiva
9	Espectroscopia RMN	Resolución de problemas
10	Espectrometría de masa	Clase expositiva
11	Espectrometría de masa	Resolución de problemas
12	TP N° 1	Trabajo práctico en laboratorio
13	TP N° 2	Trabajo práctico en laboratorio
14	TP N° 3	Trabajo práctico en laboratorio
15	Problemas combinados	Resolución de problemas
16	Quimiometría	Clase expositiva / Resolución de problemas
17	Revisión de contenidos	Clase de consulta
18	Primer Parcial	Evaluación escrita
19	Espectroscopia luminiscente	Clase expositiva / Resolución de problemas
20	Espectroscopia atómica	Clase expositiva
21	Espectroscopia atómica	Resolución de problemas
22	Introducción a la cromatografía	Clase expositiva

23	Cromatografía gaseosa	Clase expositiva
24	Cromatografía gaseosa	Clase expositiva
25	Cromatografía gaseosa	Resolución de problemas
26	Cromatografía de líquidos	Clase expositiva
27	Cromatografía de líquidos	Clase expositiva
28	Cromatografía de líquidos	Resolución de problemas
29	Radioquímica	Clase expositiva
30	Cromatografía-Espectrometría de masa	Clase expositiva
31	Cromatografía-Espectrometría de masa	Clase expositiva
32	Revisión de contenidos	Clase de consulta
33	Segundo Parcial	Evaluación escrita
34	Recuperatorio Primer Parcial	Evaluación escrita
35	Recuperatorio Segundo Parcial	Evaluación escrita
36	Examen Integrador	Evaluación escrita